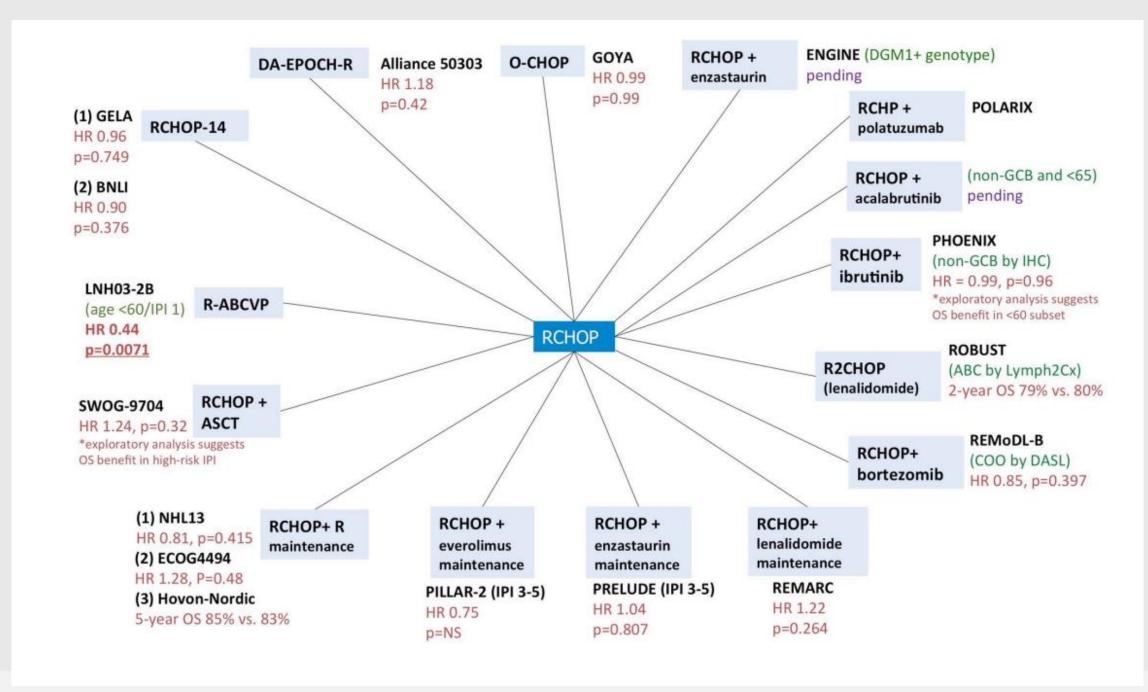
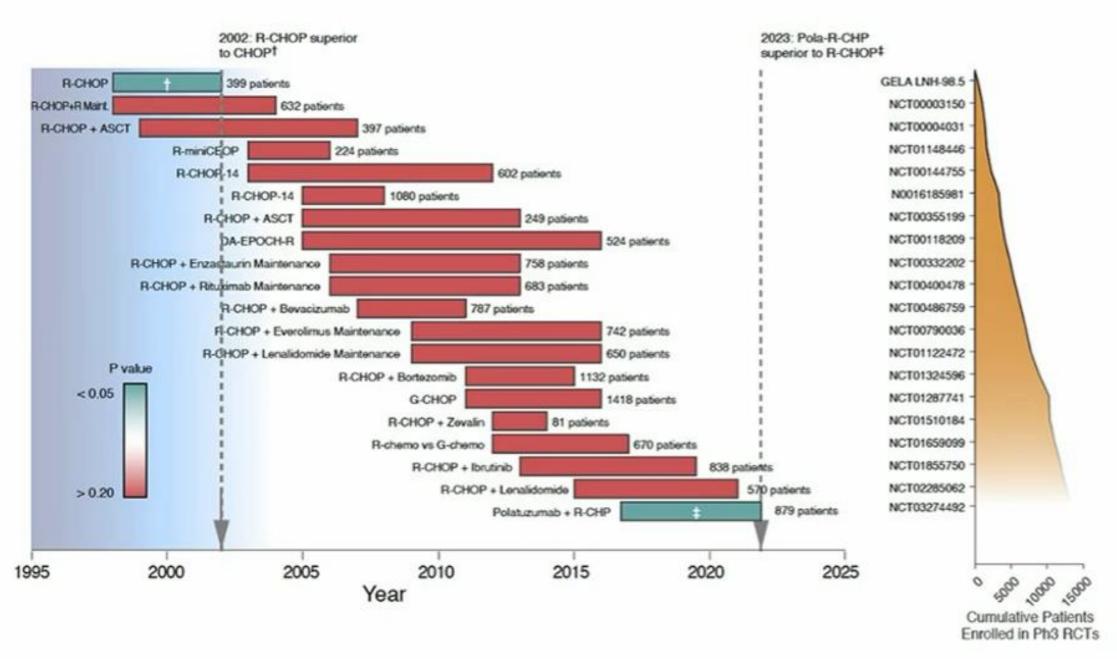
Hay un rol para Pola-R-CHP en LDCBG en entornos de bajos recursos?

Guilherme Fleury Perini, MD
Einstein Hospital Israelita
Sao Paulo, Brasil
guilherme.Perini@einstein.br

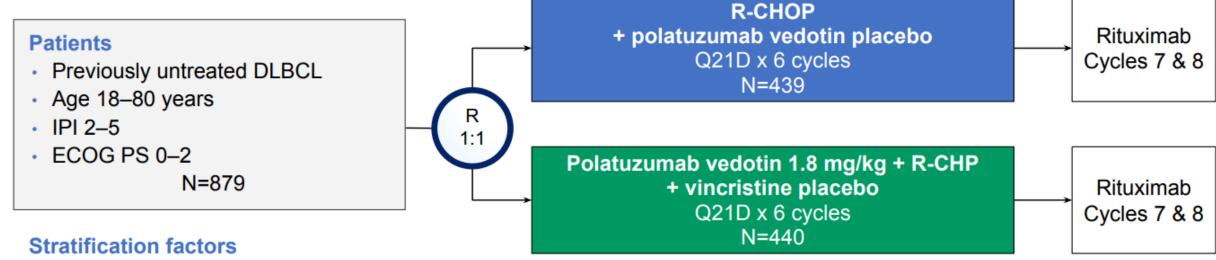
Conflitos de Interés


Speaker's Bureau: Janssen, Roche, Takeda, Abbvie, BMS, Lilly, BeiGene, Astra Zeneca, Abbvie


Educational Support: Janssen, Takeda, Roche, Abbvie

Advisory Board: Janssen, Roche, Abbvie, Astra Zeneca, Takeda

Research: Janssen, Millenium, Merck, BMS, BeiGene, MSD, Abbvie, Lilly, AstraZeneca



After Alizadeh and Kurtz; NEJM 2023

POLARIX is a Phase III Study Evaluating Pola+R-CHP vs R-CHOP

Multiregional, randomized, double-blind, active and placebo controlled trial

Collaboration with the Lymphoma Study Association (LYSA) and Steering Committee.

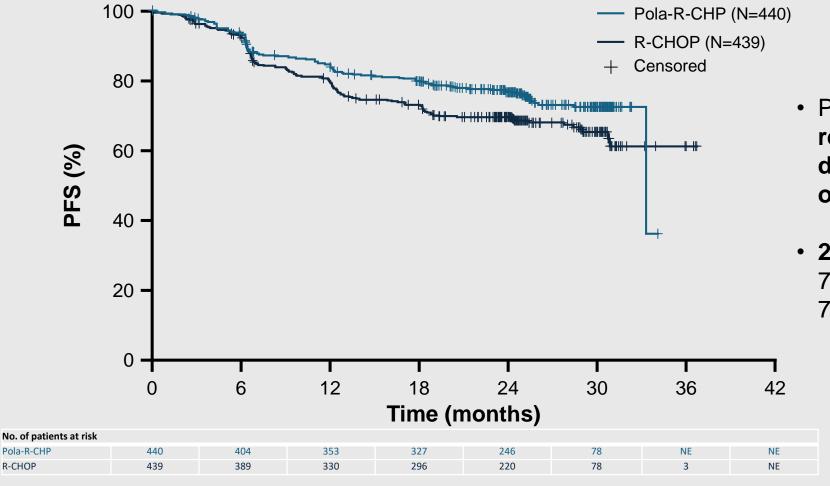
- IPI score (2 vs 3–5)
- Bulky disease (≥7.5 cm vs absence)
- Geographic region*

27% of patients were recruited in the United States

Patient Demographics and Baseline Characteristics

Balanced between the 2 arms and representative of patients with 1L DLBCL

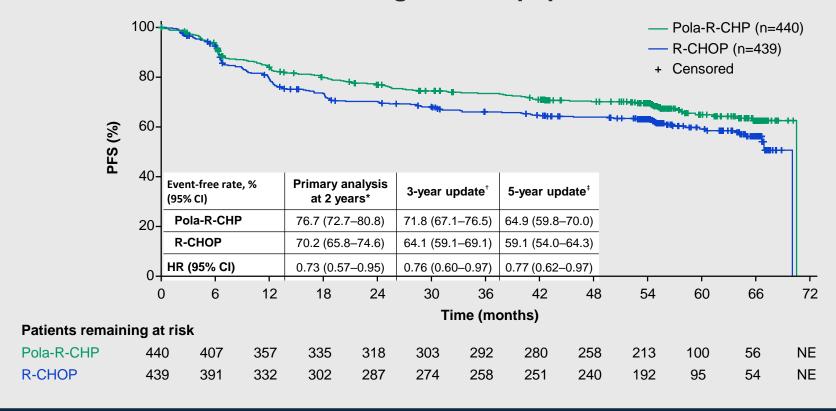
Intention-to-Treat population		R-CHOP (N=439)	Pola+R-CHP (N=440)		
Age	Median (range), years	66 (19–80)	65 (19–80)		
Sex, n (%)	Male	234 (53)	239 (54)		
ECOG Performance Status, n (%)	0–1 2	363 (83) 75 (17)	374 (85) 66 (15)		
Bulky disease (≥7.5cm), n (%)	Present	192 (44)	193 (44)		
Elevated LDH, n (%)	Yes	284 (65)	291 (66)		
Time from diagnosis to treatment initiation	Median, days	27	26		
Ann Arbor Stage, n (%)	III–IV	387 (88)	393 (89)		
Extranodal sites, n (%)	≥2	213 (49)	213 (48)		
IPI score, n (%)	2 3–5	167 (38) 272 (62)	167 (38) 273 (62)		
Cell-of-origin, n (%)*	ABC GCB Unclassified	119 (35) 168 (50) 51 (15)	102 (31) 184 (56) 44 (13)		
MYC/BCL2 expression, n (%)*	Double expression	151 (41)	139 (38)		
MYC/BCL2/BCL6 rearrangement, n (%)*	Double-/triple-hit	19 (6)	26 (8)		


^{*}In the Pola+R-CHP and R-CHOP groups, respectively, the numbers of patients evaluable for cell-of-origin were 330 and 338, with IHC for MYC/BCL2 expression were 362 and 366, and with FISH for MYC/BCL2/BCL6 rearrangements were 331 and 334. ABC, activated B-cell; ECOG, Eastern Cooperative Oncology Group; GCB, germinal center B-cell; IPI, International Prognostic Index; LDH, lactate dehydrogenase.

24

POLARIX Primary Endpoint: Progression-Free Survival

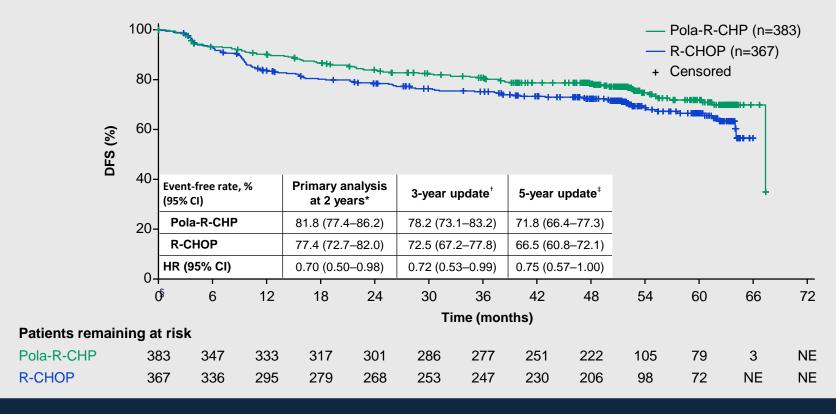
Pola-R-CHP Significantly Improved PFS Versus R-CHOP


HR 0.73 95% CI, 0.57, 0.95

- Pola-R-CHP demonstrated a 27% reduction in the relative risk of disease progression, relapse, or death versus R-CHOP
- 24-month PFS:
 76.7% with Pola-R-CHP versus
 70.2% with R-CHOP (Δ=6.5%)

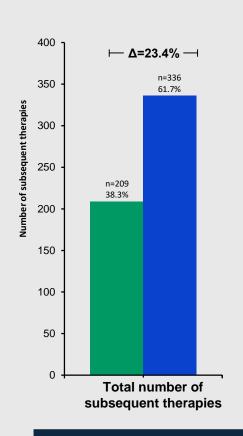
Initial PFS benefit of Pola-R-CHP over R-CHOP is maintained at 5 years

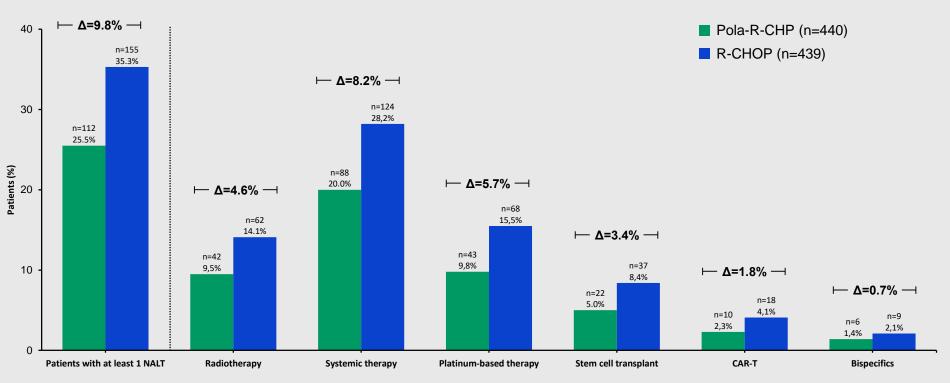
PFS in the global ITT population



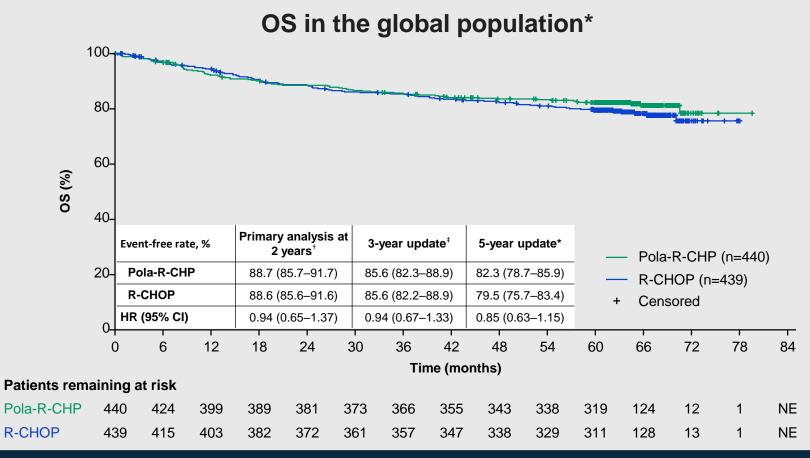
At the 5-year follow up, Pola-R-CHP had a **sustained and significant PFS benefit**, confirming results from the primary analysis of PFS at 2 years of follow up (HR 0.73).¹

DFS (DoCR) in the global ITT population




Complete remissions are durable and sustained with longer follow-up.

Subsequent therapies in the global ITT population



Patterns of subsequent therapies received on study mirror routine clinical care at the time of study conduct.

Data cut-off: July 5, 2024.

5-year overall survival shows favorable results for Pola-R-CHP-treated patients

Deaths, n§	Pola-R-CHP (n=440)	R-CHOP (n=439)
Primary analysis at 2 years [†]	53	57
5-year update*	79	91

After 5 years of follow-up, numerically fewer deaths were observed in the Pola-R-CHP versus R-CHOP arm, with an associated HR of 0.85 (0.63–1.15).

8

^{*}Data cut-off: July 5, 2024; †Data cut-off: June 28, 2021; ‡Data cut-off: June 15, 2022; §In addition to the known deaths, there were two patients (one in the Pola-R-CHP arm and one in the R-CHOP arm) who died due to an unknown cause and an unknown death date and were not counted as death events in the OS analysis.

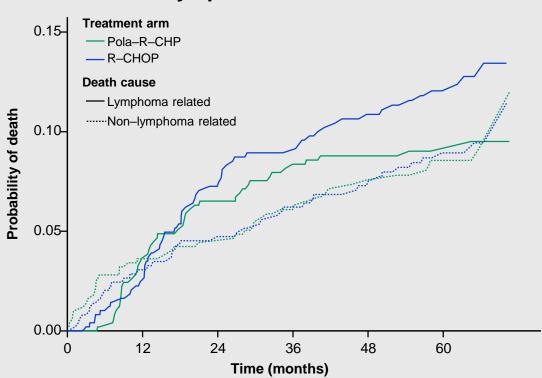
Morschhauser F. et al. JCO 2025.

n (%)	Pola-R-CHP (n=440)	R-CHOP (n=439)
Total deaths	80 (18.2)	92 (21.0)
Progressive disease	40 (9.1)	51 (11.6)
Not disease related	23 (5.2)	28 (6.8)
Infection	7 (1.6)	12 (2.7)
Secondary malignancy*	7 (1.6)	5 (1.1)
Cardiovascular	4 (0.9)	4 (0.9)
COVID-19	2 (0.5)	4 (0.9)
Other [†]	3 (0.7)	3 (1.1)
Unknown [‡]	17 (3.9)	11 (2.5)

Most deaths were related to progressive disease (Pola-R-CHP, 50%; R-CHOP, 55%). The nature and frequency of lymphoma-unrelated deaths were similar between treatment arms.

^{*}Deaths due to secondary malignancies included colorectal cancer, melanoma, non-small cell lung cancer, pancreatic cancer, ovarian cancer, small bowel adenocarcinoma with liver metastases, and T-cell lymphoma in the Pola-R-CHP arm; and acute myeloid leukemia (2 patients), glioblastoma, metastatic pancreatic cancer, and unspecified second cancer in the R-CHOP arm; Deaths due to other reasons included acute kidney injury, intestinal perforation, and respiratory failure in the Pola-R-CHP arm; and intracranial hemorrhage, liver failure, injury, other, and multiple organ dysfunction syndrome in the R-CHOP arm; Deaths due to unknown reasons included deaths reported by public records where reasons for death were not collected per reporting standards.

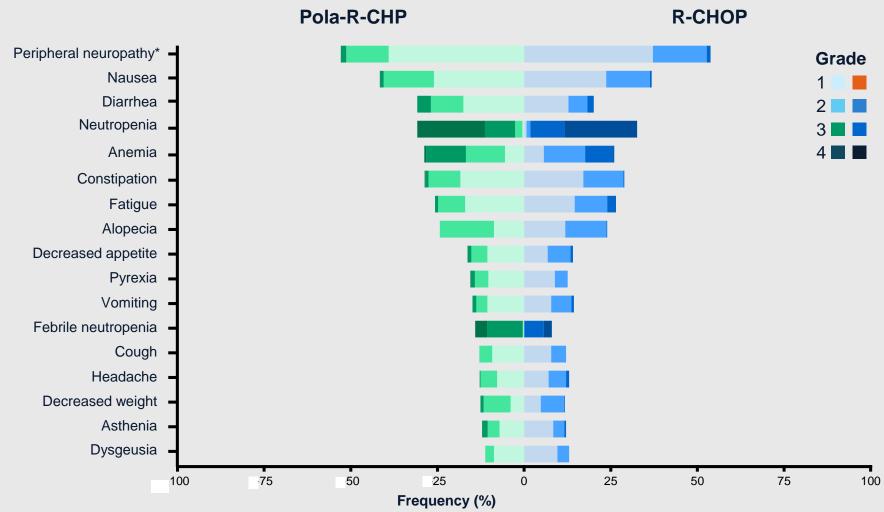
Morschhauser F. et al. JCO 2025.


		PFS									os						
Baseline risk factors		Po	ola-R-CHP (n=440)		R-CHOP (n=439)		95% Wald	Pola-R-CHP	R-CHOP	Po	la-R-CHP (n=440)	ļ	R-CHOP (n=439)		95% Wald	Pola-R-CHP	R-CHOP
	n	60-month (%)	n	60-month (%)	HR	CI	TOTAL TOTAL	better	n	60-month (%)	n	60-month (%)	HR	CI	better		
All patients		440	64.9	439	59.1	0.78	0.62-0.97	-		440	82.3	439	79.5	0.85	0.63–1.16	-	_
A	≤65	225	69.6	219	64.3	0.80	0.57–1.11	_	_	225	89.1	219	84.7	0.73	0.44–1.21		_
Age group	>65	215	60.0	220	54.5	0.78	0.58–1.06	-	•	215	75.3	220	74.5	0.95	0.65–1.38	_	_
Stratification -	2	167	67.2	167	68.3	0.91	0.61–1.36		_	167	87.6	167	87.4	0.96	0.53–1.75		
PI score	3–5	273	63.2	272	53.5	0.72	0.55–0.94			273	79.2	272	74.7	0.81	0.57–1.15	_	_
Stratification – oulky disease	Absent	247	69.9	247	60.0	0.61	0.44–0.83	-		247	83.9	247	80.9	0.79	0.52-1.20	-	_
(≥ 7cm)	Present	193	58.5	192	57.9	1.02	0.73–1.41	_	—	193	80.3	192	77.9	0.92	0.60–1.43	_	<u>—</u>
Pasalina I DU	≤1xULN	146	65.3	154	64.8	0.83	0.55–1.23		_	146	88.7	154	87.9	0.85	0.45–1.61		
Baseline LDH	>1xULN	291	64.3	284	55.7	0.77	0.59–1.01	-		291	79.0	284	74.9	0.85	0.60–1.19	-	_
No. of extranodal	0–1	227	68.1	226	64.2	0.78	0.56–1.09	_	-	227	83.7	226	81.9	0.86	0.56–1.34		_
sites	≥2	213	61.2	213	53.8	0.78	0.58–1.06	-		213	80.9	213	77.1	0.85	0.56–1.28		<u> </u>
	DLBCL, NOS, ABC, GCB	373	65.7	367	58.8	0.75	0.59–0.95	-		373	81.9	367	79.8	0.89	0.64–1.23	-	_
NHL subtype	HGBL, NOS, DHL/THL	43	66.0	50	57.6	0.67	0.33–1.37	-	_	43	85.4	50	72.4	0.46	0.18–1.22	•	_
	Other LBCL	24	49.7	22	70.3	1.86	0.69–5.04		-	→ 24	83.3	22	90.9	1.93	0.35–10.52		
	NanoString GCB	187	65.9	170	65.8	1.07	0.74–1.56	_	_	187	82.9	170	82.3	0.99	0.60–1.61	_	
NanoString	NanoString ABC	106	72.5	129	45.8	0.38	0.24–0.59	←■		106	84.6	129	69.9	0.49	0.28-0.88		
000	NanoString UNC	44	55.2	53	70.8	1.60	0.79–3.25	_		44	76.9	53	94.2	4.46	1.23–16.21		
	Unknown	103	60.2	87	59.7	0.83	0.51–1.33		_	103	81.3	87	79.0	0.80	0.42-1.51		
Double	DEL	139	63.1	151	50.0	0.65	0.45–0.94			139	76.4	151	73.0	0.84	0.53–1.33		_
expressor	Non DEL	223	66.6	215	64.7	0.89	0.64–1.24		_	223	86.3	215	82.8	0.81	0.51–1.30		_
by IHC	Unknown	78	63.7	73	63.5	0.84	0.48–1.47			78	81.6	73	84.1	1.18	0.53–2.59		

- PFS and OS by subgroups, including high-risk subgroups, generally favor Pola-R-CHP; however, subgroup analyses are exploratory and generally underpowered (especially for OS).
- Patient characteristics are multidimensional; therefore, translating univariate subgroup results into patient care should be applied with caution.

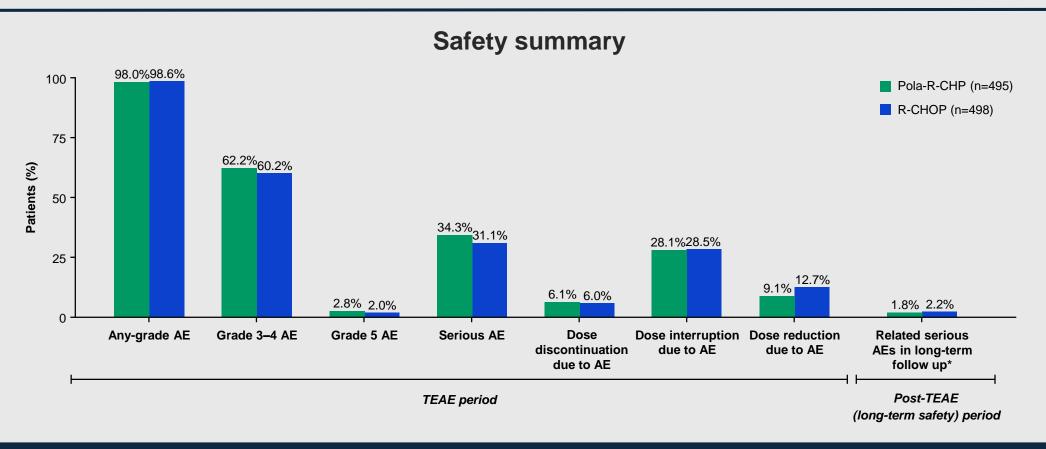
Competing risk analysis for deaths in the expanded population

Cumulative incidence plot of deaths due to lymphoma and from other causes



	Pola-R-CHP (n=500)	R-CHOP (n=500)							
Probability of lymphoma-related deaths, %									
2 years	6.52	7.26							
3 years	8.37	8.94							
5 years	9.02	12.05							
Probability of non-lymphoma-related deaths, %									
2 years	4.44	4.73							
3 years	6.09	6.21							
5 years	8.56	8.93							

Cumulative incidence of lymphoma-related deaths was lower in patients treated with Pola-R-CHP versus R-CHOP (9.02% vs 12.05%).


POLARIX: Common Adverse Events

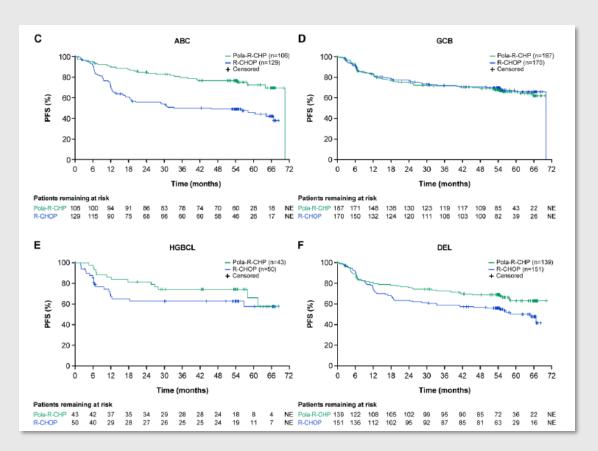
Data cut-off: June 28, 2021. Adverse events are Medical Dictionary for Regulatory Activities version 24.0 preferred terms; shown are all-grade adverse events occurring in ≥12% of patients in any treatment arm. *Peripheral neuropathy is defined by standard organ class group of preferred terms.

Safety profile remained comparable between treatment arms, with no increased risks with long-term follow-up. There was no substantial change in the proportion of patients with AEs (≥5%) compared with the global population.

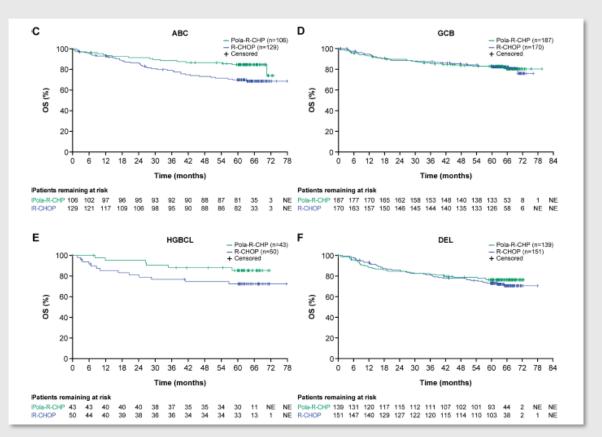
Data cut-off: July 5, 2024. *TEAEs are defined as new or worsening AE from the first dose of study drug through 90 days after the last dose of any study drug or prior to NALT, whichever is earlier. After this TEAE period, the post-TEAE period (i.e. long-term safety follow up) reporting requirement is only for serious AEs that the investigator believes to be related to prior study drug treatment. AE, adverse event; TEAE, treatment-emergent adverse event.

Select adverse events of particular interest in the expanded population

Patients, n (%)	Pola-R-CHP (n=495)	R-CHOP (n=498)
Peripheral neuropathy All grade Grade 3–5	249 (50.3) 7 (1.4)	261 (52.4) 5 (1.0)
Infections All grade Grade 3–5	237 (47.9) 75 (15.2)	219 (44.0) 66 (13.3)
Cardiac arrhythmias All grade Grade 3–5	18 (3.6) 3 (0.6)	26 (5.2) 5 (1.0)
Carcinogenicity* All grade Grade 3–5	5 (1.0) 5 (1.0)	12 (2.4) 9 (1.8)

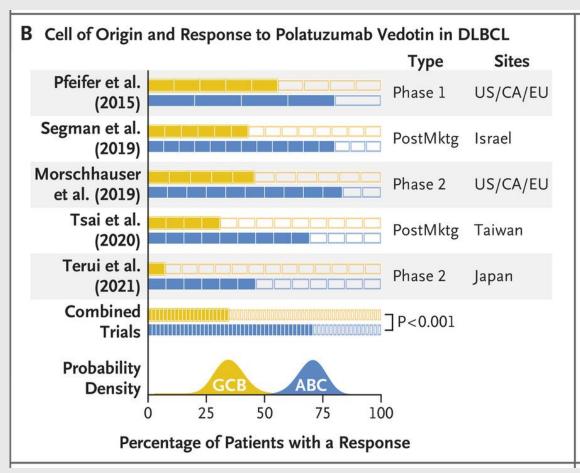

Patients, n (%)	Pola-R-CHP (n=495)	R-CHOP (n=498)
Neutropenia All grade Grade 3–5	240 (48.5) 216 (43.6)	228 (45.8) 205 (41.2)
Anemia All grade Grade 3–5	165 (33.3) 56 (11.3)	150 (30.1) 49 (9.8)
Thrombocytopenia All grade Grade 3–5	89 (18.0) 32 (6.5)	86 (17.3) 31 (6.2)

There was a <5% difference in hematological toxicities and infections in the Pola-R-CHP versus R-CHOP arm. Fewer secondary malignancies were observed with Pola-R-CHP versus R-CHOP.

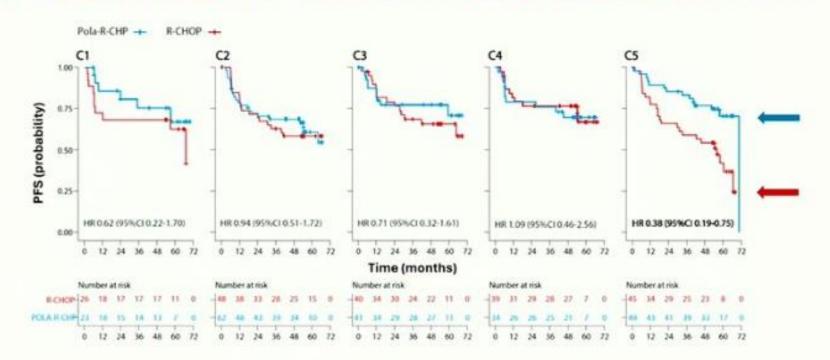


POLARIX Study: Outcome in COO and other subtypes

Progression-Free Survival



Overall Survival


Pola en LNCBG subtipo ABC

Benefit of Pola-R-CHP in Patients with Cluster 5 DLBCLs

- Patients with C5 DLBCLs 5-yr PFS higher in Pola-R-CHP versus R-CHOP treatment arm
 - Pola-R-CHP 70.4% (95%CI 57.6-86.1)
 - R-CHOP 42.0% (95% CI 28.0-63.0)
- Hazard ratio (HR) for Pola-R-CHP vs R-CHOP 0.38 (95% CI 0.19-0.75, p=0.005) in patients with C5 DLBCLs
- Pola-containing regimen abrogated the predicted poor outcome in C5 tumors.
- In contrast, 5-yr PFSs and HRs comparable for patients with C1-C4 DLBCLs in the two treatment arms

MCD/Cluster 5

Análise da Microscopia

Analisado o bloco de parafina de numeração AE23-064686. A amostra apresenta cerca de 90% de conteúdo tumoral no material avaliado.

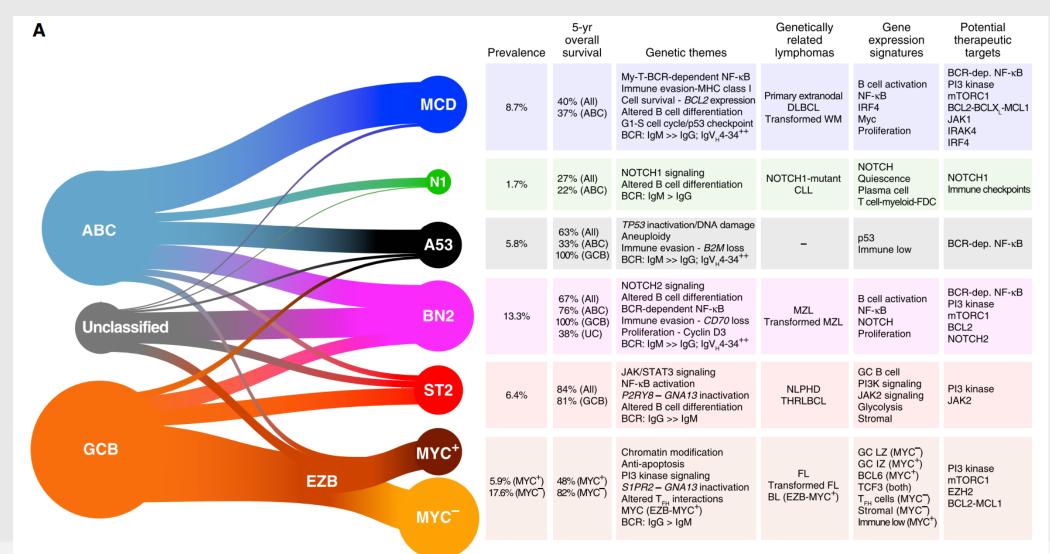
Carga Mutacional Tumoral

10,2 mutações/Mb

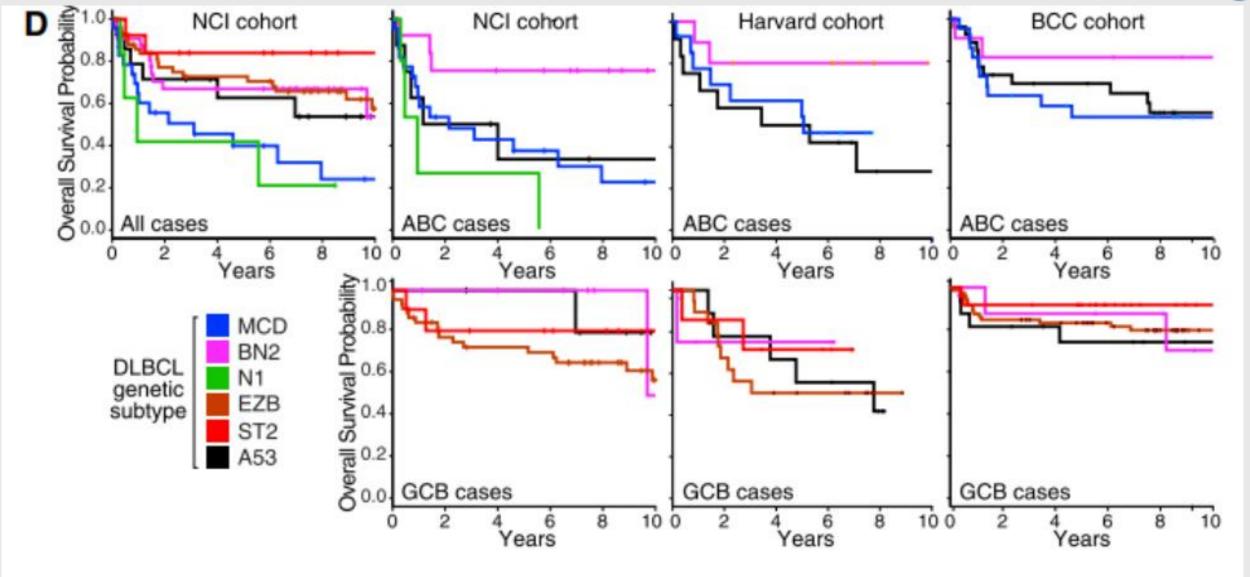
Status Microssatélite

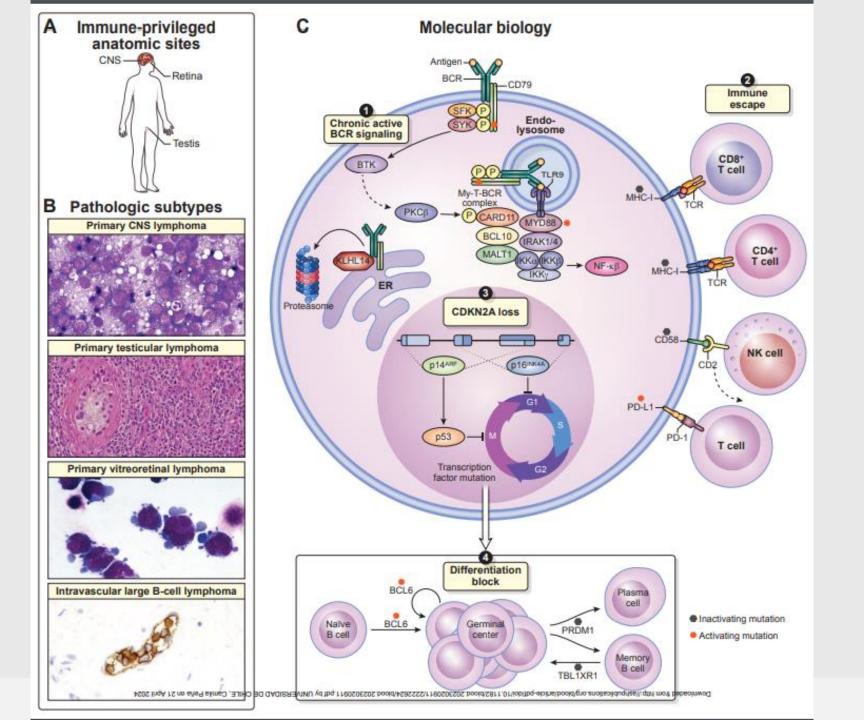
Instabilidade de microssatélites não detectada

Alterações Genômicas

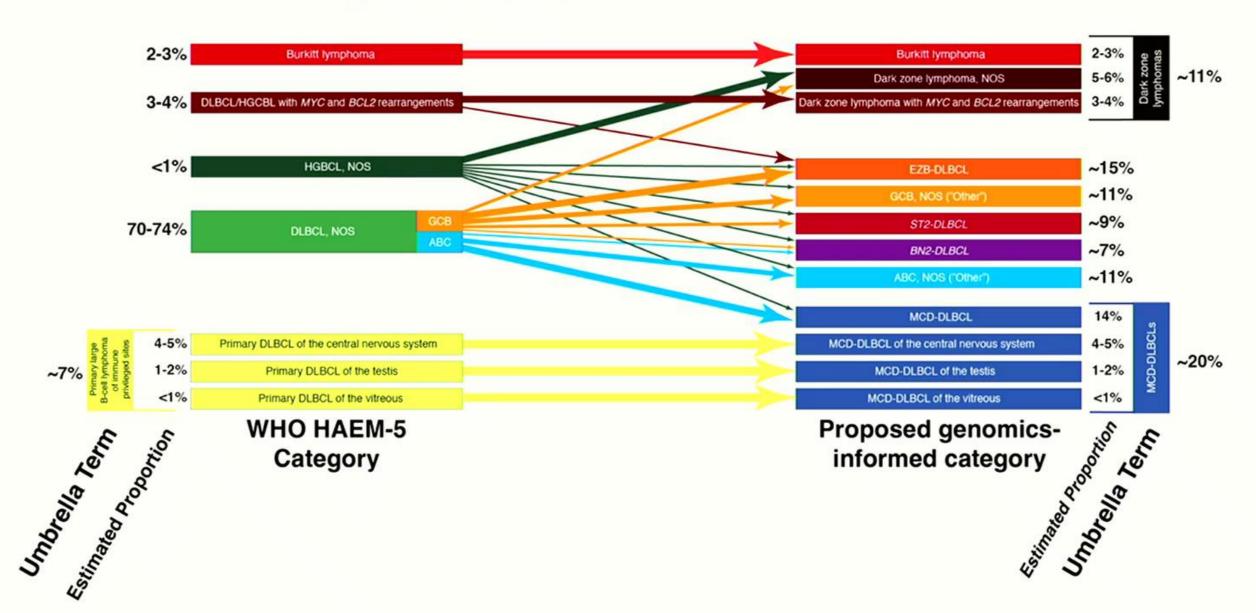

Foram encontradas variantes clinicamente relevantes envolvendo os genes MYD88, CD79B, HLA-C, ETV6, BTG1 e PIM1.

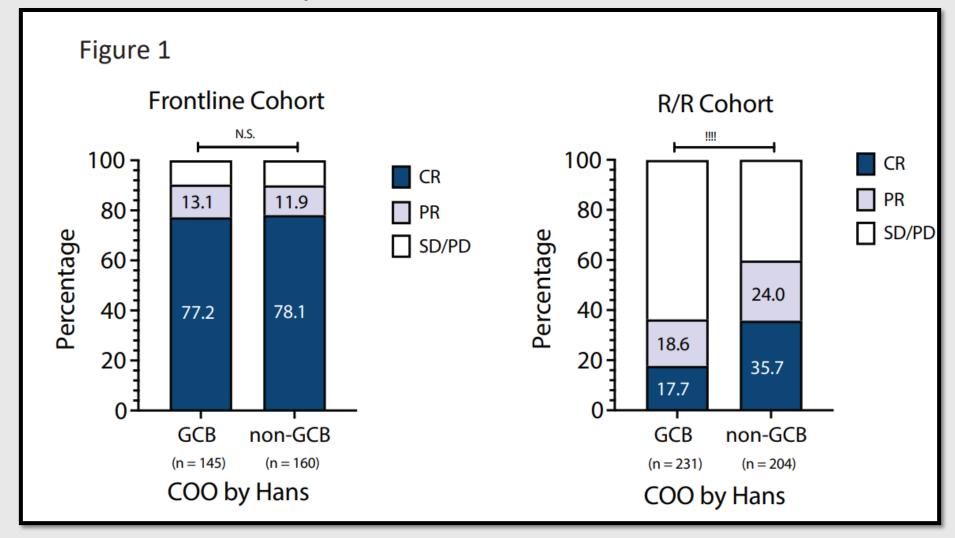
Variantes	Frequência Alélica	Terapias com potencial benefício clínico	Terapias potencialmente associadas a resistência	Ensaios clínicos
MYD88 L265P	38,3%	-	-	-
CD79B Y196F	80,9%	-	-	NCT02503423
HLA-C Q78*	70,6%	-	-	
ETV6 c.33+1G>A	38,1%	-	-	-
BTG1 E50K	36,9%	-	-	-
PIM1 E79D (variante de significado incerto)	42,8%	-	-	-



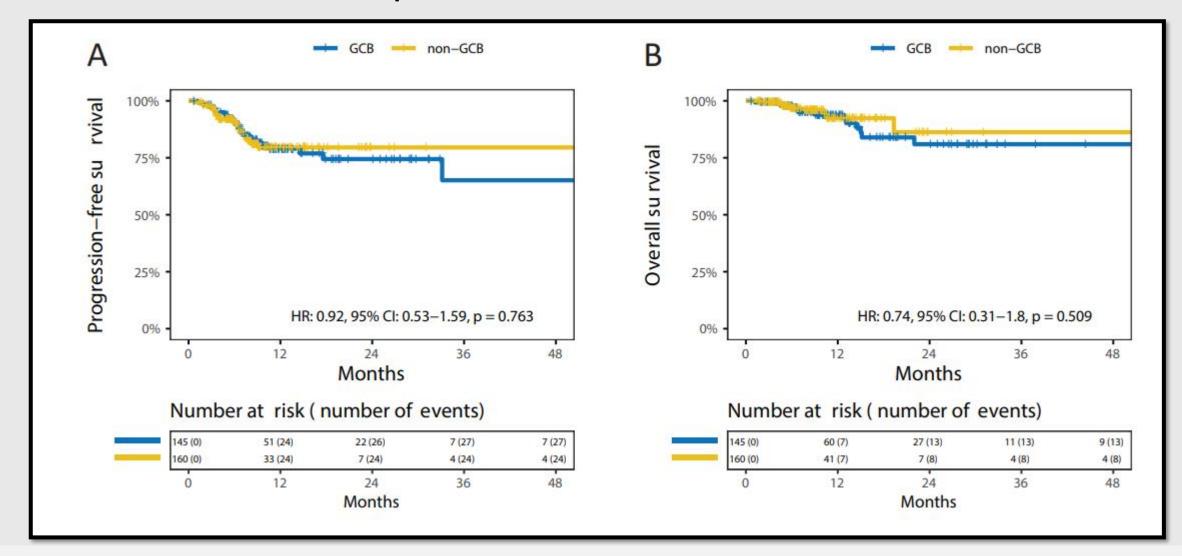


Molecular Classification of DLBCL

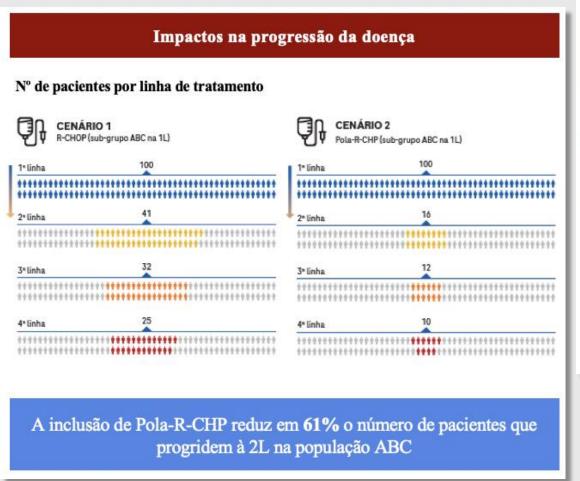


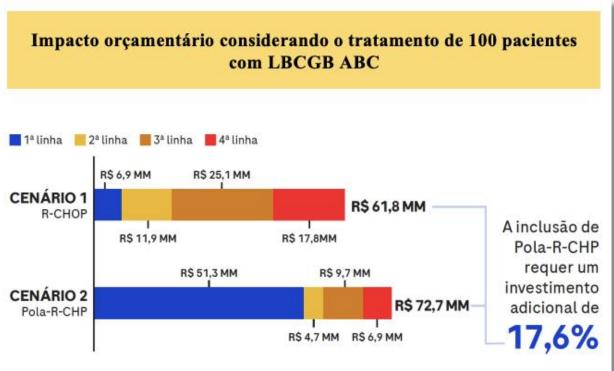


Draft of a genomics-informed classification


Podemos Utilizar COO por Hans?

26 Cliff et al, ACCR 2025




Podemos Utilizar COO por Hans?

27 Cliff et al, ACCR 2025

Impacto Orçamentário e benefício clínico de Polatuzumabe Vedotina na primeira linha de tratamento para o Linfoma Difuso de Grandes Células B no contexto Brasileiro

Conclusiones....

- Creo que, si possible, todos usaríamos Pola-R-CHP para todos
 - A Nadie le apasiona Vincristina!
 - Pero esta no és la realidad economica de nosotros
 - Elige bien para tenerlo disponible!
- Como hacemos en Einstein Hospital Israelita?
 - Pola-R-CHP para todos non-GCB
 - Si vas a hacer R-Mini-CHOP, hacemos Pola-R-MiniCHP
 - Si GCB y IPI>2, discutimos individualmente

Pola R-CHP en entornos de bajo recursos

- En un escenario con CART, Pola-R-CHP es viable economicamente en LGCBG
 - Pero no es nuestra realidad
 - Sin CART, el impacto economico és maior, pero mucho más pacientes se quedaran curados
 - Cual va a ser el impacto de Biespecíficos tanto em 1a línea quanto en la recaída?
- Devemos utilizar nuestros recursos con mas inteligencia:
 - Cuantos acá tienen COO para todos sus pacientes?
 - Testes moleculares?

Gracias! Muito Obrigado!

Guilherme.Perini@einstein.br

Obrigado!

Guilherme Perini, MD

Guilherme.perini@einstein.br

